
Journal of Statistical Physics, Vol. 74, Nos. 3/4. 1994

Cluster Hull Algorithms for Large Systems
with Small Memory Requirement

H. Vol lmayr ~'2

Received August 24, 1993; final September 23, 1993

Improved hull walking algorithms for two-dimensional percolation are
proposed. In these algorithms a walker explores the external perimeter of
percolation clusters. With our modifications very large systems (size L) can
be studied with finite and small memory requirement and in computation
time ~ ~ L TM. Applications in determining spanning probabilities, continuum
percolation, and percolation with nonuniform occupation probability are
pointed out.

KEY WORDS: Two-dimensional percolation; hull algorithm; maze walker;
cluster perimeter; Monte Carlo; random number generator; continuum
percolation; gradient percolation; self-organized criticality.

Percola t ion has been s tudied extensively in recent years (see ref. 1 for an
overview). It provides examples of critical phenomena which are easily
accessible to numerical investigation. Appl ica t ions range from geology
(flow in porous media) to ecology (forest fires) to thermal phase
t ransi t ions t2) and the quan tum Hall effect. (3)

One of the most e lementary problems in percola t ion is to determine
whether a percola t ing cluster connect ing opposi te sides exists in a finite
system. Hoshen and K o p e l m a n (4) in t roduced an a lgor i thm which performs
this task in a time of the order of the volume of the system, ~ ~ L a, apar t
from logar i thmic factors. It also yields the probabi l i ty d is t r ibut ion of
clusters with size.

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-
3080.

2Current and permanent address: Institut for Theoretische Physik, 37073 G6ttingen,
Germany.

919

0022-4715/94/0200-0919507.00/0 �9 1994 Plenum Publishing Corporation

920 Vollmayr

Ziff etal. tS) proposed an algorithm which explores the hull (the
external perimeter) of large clusters. A walker (e.g., a highly trained ant)
proceeds on occupied Iattice sites along the hull always keeping to the left.
The algorithm corresponds to a well-known strategy to avoid getting lost
in a two-dimensional maze. A walker who always touches the (locally) left
wall is certain to return to the starting point before passing any point in
the maze more than twice. Indeed the algorithm has been used in maze
walking programs (see, e.g., ref. 6).

In one of the first applications to percolation it was used to determine
the fractal dimension Dh =' / /4 of the hull of large clusters/5'7~ This result
is now known to be exact/s'9~

The question whether a spanning cluster, connecting top and bottom
of a system of L x L sites, exists can be decided in the following way. t~~
The leftmost column of sites is held unoccupied while the lowest row is
completely occupied. The walker begins in the lower left corner and walks
until it reaches the top row (in which case there is a spanning cluster) or
the rightmost column (in which case there is no spanning cluster). The
spanning probability RL(p) has been determined accurately using this
algorithm.l~)

The main advantage of hull walking algorithms--besides their
simplicity--is that only the sites on the hull and their unoccupied nearest
neighbors to the left have to be generated. (To "generate a site" means to
decide whether it is occupied by generating a random number. Each site is
generated locally, i.e., only at the time when the walker needs to know its
state.) For large systems this is only a small fraction of the whole lattice.

However, there is the following problem. If the walker comes back to
a previously visited site, it must find the site in the same state (occupied or
unoccupied) as before--unless one wants to study a trivial annealed model.
We are going to discuss a strategy which has been used before to handle
this problem (labeled A below), and then propose two new methods
(B and C below).

In ref. 11 every site is in one of three states: unvisited (0), unoccupied
(1), occupied (2). Before the walker starts, all sites are set unvisited. Along
the run a previously unvisited site is generated and set to the appropriate
state, while a previously visited site is not generated again. We call this
strategy A. While it solves the problem of multiply visited sites, it intro-
duces limitations for the algorithm. First, memory space of the order L 2 is
required to store the states of all sites in the system. Second, for very large
L the initialization time scales as Tin" ~ L z, for we need to set all sites
unvisited. The actual walk takes time proportional to its length n,., i.e.,
l',v'~ n w,- , L 7/4, so in the thermodynamic limit most of the time is used to
initialize sites, which will never be visited. However, for practical purposes

Hull Algorithms for Large Systems 921

it is the memory requirement that will limit the system sizes L that can be
studied, because the initialization can be done very efficiently on many
machines.

Strategy B consists of storing only the states of sites that have been
visited in a "balanced tree. ''c~2"~3~ Before generating a new site the tree must
be searched to find out whether the site has been generated before, and if
so, whether it is occupied. The tree requires memory space proportional to
the number of steps in the walk n,, ~ L 7/4. Searching and storing requires
CPU-time proportional to ln(n,.) for one site, thus the total computation
time scales as T,',~n,,ln(n,,,)~LT/41n(L). Therefore, apart from the
logarithmic factor, the faster scaling ~ L 7/4 of the hull survives for large L.
The memory limitation is less severe than for strategy A, but is still present.
Searching and sorting in balanced trees is nontrivial, but we can use the
corresponding programs from ref. 13 for our purpose with no substantial
modification.

Strategy C makes use of a particular random number generator
(RNG). ~14)'3 It generates a random number r by applying a very nonlinear
function f to an input number i , i.e., r = f (i) . The generated numbers are
random in the sense that there are no detectable correlations between input
numbers and output ("random") numbers. In particular, very similar input
numbers correspond to apparently uncorrelated output numbers. We give
a brief sketch of the nonlinear function f (i) . Here i and r are 64-bit
words. (Actually both numbers are represented by two 32-bit unsigned
integers, which are called "left 32-bit word" and "right 32-bit word.") The
function fcons is t s in four iterations of a "cycle," during which the old right
32-bit word becomes the new left word and the new right word is the result
of a 32-bit XOR operation with the arguments (left word) and g(right
word), g is a nonlinear function which includes multiplication, addition,
and XOR operations applied to the 16-bit long left and right parts of its
argument. For details we refer to ref. 14.

To generate a site at (x, y) we use its address as input to the RNG
and obtain a 64-bit random number r =f(x, y), which is used to decide
whether the site is occupied. In this manner we are able to generate
random occupation probabilities that depend only on the site which is
currently visi ted--and not on how many random numbers have been
generated before by a (somewhat faster) sequential RNG. Obviously there
is no need to store the state of any site. If we confine ourselves to the study
of a system with size L=22~ 10 6, the unused 12 bits in left and right

3 The first edition of ref. 14 does not include the RNG, which was used here, but discusses its
parent, the "Data Encryption Standard" (DES), which is probably better--i.e., has fewer
correlations--but much slower.

922 Vollmayr

words (x, y) can be used to number different runs, which are stat ist ically
independent for pract ical purposes.

Now we discuss some results obta ined with strategy B. As ment ioned
above, the computa t ion time for the spanning a lgor i thm is p ropor t iona l to
the length of the walk n,., apar t from logar i thmic factors. Two cases must
be distinguished. Consider first the critical point p = p,,. The total length of
the walk n,,. can be divided into two parts n,. = nl,!~ + n~,. 2~. If the system per-
colates from bo t tom to top, nl,! ~ is defined as the length of the walk until
the walker visits the bo t tom row for the last time. n~2. ~ is then the length of
the walk on the hull of the spanning cluster, nl,! I can be interpreted as the
length of the walk to find the spanning cluster. If the system does not
percolate, n~,,! j is defined as the length of the path until the walker visits the
left column for the last time. nl,21 is p ropor t iona l to L oh, where D h = 7/4
is the fractal d imension of the hull. nl,,J, I is found numerical ly to be also

7.0-

6.0-

5.0-

4.0-

2.5

x
�9 Iog~o(n~)

�9 logzo(n~)

p = ,5928

31o 315 41o ~.5
I o g m (L)

Fig. 1. At the critical point the length of the walk scales as n,.~ L TM. Here nl,! j is the time
which is needed to find the percolating cluster (or wall). It follows the same sealing law. The
data points are averages over 1000 runs for L = 500, 1000, 2000, and 4000, over 500 runs for
L=8000, and over 100 runs for L=I6,000. All runs together took about 40hr on a
SPARCstation 1. Where error bars are missing, the statistical error is smaller than the size of
the dots.

Hull Algorithms for Large Systems 923

propor t ional to L ~ (Fig. 1). So the total walk n,. is also propor t ional
to Lm; numerically we find (Fig. 1)

z ~ L o~,, D~, = 1.754 + 0.007 (1)

The computa t ion of the data points in Fig. 2 took about 4 0 h r on a
SPARCsta t ion 1.

If p > Pc, the dimension of the percolating cluster is 2 and the walker
will essentially stay close to the left wall, its mean distance being of the
order of the correlat ion length ~. If 1 ,~ r ,~ L, we can divide the left stripe
of the system where the walker advances into L / ~ clusters of unoccupied
sites with linear extent r and hull ~ ~7/4. The walker goes along the hull of
these clusters and hits the straight left wall between two clusters. So the
length of its total walk scales as

nw ". ~7/4(L/~) = L r 3/4 " L (p - P c) - ' (2)

For p < Pc the same argument holds for the dual system, i.e., for non-
occupied sites which are defined to be connected if they are nearest or next
nearest neighbors. So the walker stays close to the bo t tom row with mean
distance propor t ional to ~ and the same scaling behavior (2), which is
confirmed by Fig. 2. For p ~ Pc the computa t ion time is bounded by (1),
which leads to a saturat ion at n~aX(L= 16,000).w. 1.15x 10 7. The time is
measured in walker steps, so it counts the occupied sites which are visited
by the walker, where some sites are counted twice. For the system studied
here, L = 16,000, L 2 / n ~ ax ~ 23.

10 7

n~

10 ~

L =]6000
p~ = . 5 9 2 7 5

i i I l l I I I I I I I * r I

l O - a 1 0 - 2

p~ - p

Fig. 2. Off the critical point the length of the walk scales as n,.~ IP-Pcl-J. Close to p,.
finite-size effects bound n,.. The data points are averages over 100 runs, respectively.

822,74/3-4-30

924 Vollmayr

Both strategies B and C can be used for continuum percolation like
the two-dimensional Swiss-cheese model, e.g., in Rosso's algorithm, t~5)

We applied strategy C to the gradient hull algorithm introduced by
Ziff and Sapoval. t~6~ Consider site percolation on a square lattice where the
occupation probability depends on the position p(x, y). To be specific, let
p(x, y) = Po- Gy. Then there is a gradient G in the occupation probability.
All sites (x = 0 , y > 0) are left unoccupied and all sites (x = 0 , y~<0) are set
occupied. The walker starts at the origin heading to the right. If G is small
(G < 10-3), the walker will essentially go to the right at a height y which
fluctuates around y~, defined by p(x, y~)= p~. The typical spatial fluctua-
tion Ce and the corresponding fluctuation Ape can be estimated by a
heuristic argument. ~9' ~6~ For Ay = y - y~ > Ce we have finite clusters with a
typical size ~ ~ Ip--p , l -4 /3~(GAy) -4/3. The clusters grow together at
AYe = Ce, which leads to

~ e ~ G - 4 / 7 a n d Ape ~ G 3/7 (3)

This is confirmed by Fig. 3. If a very long walk is performed, the mean
value (p(x, y)) = Po- G (y) approaches pill, providing an estimate for
Pc. The largest value of x, x can be found by dividing the walk into
Xma,,/~e pieces of size Ce- As the fractal dimension of the hull is D, = 7/4,

,r 7 /4 x I , r ,.~ the walker goes , ~ , ~ 4 steps on each piece, so that n w ' - ~ e max/~e
Xmax G-3/7. The statistical error for p~e) is given by Ape divided by the
number of independent measurements, which is the number of pieces of

10 -2

ApG 10 -3

t I I i I I I

10-s 10-s 10~7 10-6 10-s 10-4 10-3

G

Fig. 3. In the hull gradient algorithm the walker moves in a region where p(x, y) ~ p~G~ ~ pC.
The fluctuations JPG are proportional to G 3/7, where G= [Vpl is the gradient. For small
gradients, fluctuations are small, but the statistical error grows (see text).

Hull Algorithms for Large Systems 925

size ~c:Xm,x/~o~n,.G. So we find for the
Apo(n,,.G)-1/2 ~ G-1/14n,7. 1/2) i.e.,

statistical error Ap~C)~

n.. ~ G-In(Ap(f)) -2 (4)

This result means that in order to obtain p~ 1~ with the same accuracy
as p~C), we need to run the program ten times longer. Of course, G must
be large enough that x,~,,,/~e>l and one must be certain that
IP~G)-Po] <Pc. (If riot, one has to wait for equilibration, see below.)
Because p(f) ~ s o Pc, we are interested in P c - p ~) f o r small G > 0. In part
the finite-G deviation is characterized by dpc. There is no convincing argu-
ment which could tell us how the mean (p(x, y)) should be taken--as the
arithmetic mean P o - G (y) (which we chose), as a geometric mean, as the
mean occupation probability of the sites along the walk, 116'17) or anything
else. However, it does not seem unplausible--and simulations strongly
indicate this-- that for very small G all definitions of p~G) approach each
other and Pc more rapidly than Apt approaches zero, i.e., (pc-p(~))/
ApG ~ ~ 00. This needs some more investigation. Another limitation of the
accuracy ^~-(G) u, pc is the fact that p(x, y) on a lattice is quantized. It is very
surprising that pl. a ~ - p~ has been found "6) to be at least two orders of
magnitude smaller than G = 4 x l 0 -S, which is the step p (x , y) -
p(x, y + 1) for nearest neighbors. We can avoid any uncertainty about the
convergence of p (f) - p , , by choosing G small enough that the error is
dominated by Ape- -but at some cost. First the statistical error will
increase according to (4), which is not too costly, because 1/7 is a small
exponent. Second CG and the necessary size of our system will grow;
however, this does not matter if strategy C is used.

p~ can also be measured the following way. First let G be small enough
that AP6 ~ G3/7 is our desired accuracy. Then start with Po being the best
known value ofpc at (0, 0). After n,,. steps the walker has reached the criti-
cal region, i.e., p(x, y) - P c < ,dPG. The n,. is determined as follows. The
walker goes on the hull (length ~ ~7/4) of finite clusters (size ~.-. Ap -4/3)
which "stick" to the boundary at x = 0, until it reaches Ay ~ ~G, when it
begins to move to the right. The total length is

n,, = dn,,, ,,. - dy ~7/4/r
,:Iv = A y 0 YO

f~a --4/3)3/4 1 r~a 1
"-- yodY(Ap -G- Jayodyy

Ayo G- I APotd " G -1 In --~-- ~ In (5)
g c Ap.~w

926 Vollmayr

So apart from the logarithmic factor, n , , ~ G -~ ~z~p~ 7/3. This is again a
little slower than the statistical limit Ap,_ 2. It is an interesting question
whether there are algorithms to determine p,. which scale faster, i.e.,
z ~ Ap>~--7/3, for Ape ~ O. The results in ref. 16 seem to indicate this.

Another application of strategy C is to consider a more complicated
function p(x, y). As has been pointed out in ref. 17, for gradient percolation
p~Ol is approached automatically. If we let p(x, y) = Po + ky/x, the gradient
G ~ k /x becomes smaller the farther the walker proceeds. In this case p,.
(not only IG~ Pc) is approached automatically, i.e., with ever increasing
accuracy, much like in invasion percolation. ~s~ We regard this as an
instance of self-organized criticality. Scaling arguments similar to those
mentioned above lead to n.,~ (~pa) -1~ which would be rather slow if
,dpa were a typical measure for the accuracy of the determination of Pc.

For arbitrary p(x, y) (gradients should be small everywhere) the mean
movement of the walker depends on whether or not it is in the critical
region, [p(x, Y) - P c l <APo=lVpl~lVpl 3/7. In the critical region the drift
perpendicular to the gradient is dominant and the average velocity is
v,--[Vp[3/7. This is easily obtained from XmaJn,, (see above). Outside the
critical region the average velocity is oriented (anti)parallel to the gradient
in the direction ofp~ with an absolute value v-,-~-3/4 ~ iVpl3/7. One expects
a transition region for Ip(x, y) - p,.I .~ IVpl 3/7.

To conclude, we propose two new strategies for handling the "return
problem" in hull walking algorithms for two-dimensional percolation. One
of them is based on the use of a particular random number generator. 1141
The strategies extend the application of hull algorithms to extremely
large systems, taking full advantage of fast scaling with finite (small)
memory space. Several applications in determining spanning probabilities,
continuum percolation, and generalized gradient percolation have been
pointed out.

A C K N O W L E D G M ENTS

We thank D. Stauffer and S. Sondhi for valuable comments on the
manuscript. This work has been done during a stay at the University of
Illinois at Urbana-Champaign. It is a pleasure to thank A.J. Leggett and
the Physics Department for their hospitality. We gratefully acknowledge
support by the Deutsche Forschungsgemeinschaft.

REFERENCES

1. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis,
London, 1992).

2. R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58:86 (I987); J.S. Wang and
R. H. Swendsen, Physica A 167:565 (1990).

Hull Algorithms for Large Systems 927

3. S. A. Trugman, Phys. Rev. B 27:7539 (1983).
4. J. Hoshen and R. Kopelman, Phys. Rev. B 14:3428 (1976).
5. R. M. Ziff, P. T. Cummings, and G. Stell, J. Phys. A 17:3009 (1984).
6. G. E. Lautenbaugh, Jr., and R. Smedley, C through DESIGN (Franklin, Beedle and

Associates, Wilsonville, Oregon, 1988).
7. R. F. Voss, J. Phys. A 17:L373 (1984); T. Grossman and A. Aharony, J. Phys. A 19:L745

(1986); R. M. Ziff, Phys. Rev. Lett. 56:545 (1986).
8. H. Saleur and B. Duplatier, Phys. Rev. Lett. 58:2325 (1987); A. Bunde and J. F. Gouyet,

J. Phys. A 18:L285 (1985).
9. B. Sapoval, M. Rosso, and J. F. Gouyet, J. Phys. Lett. (Paris) 46:L149 (1985).

10. P. Grassberger, J. Phys. A 25:5475 (1992).
11. R. M. Ziff, Phys. Rev. Lett. 69:2670 (1992).
12. G. M. Adel'son-Verskii and E. M. Landis, Dokl. Akad. Nauk SSSR 146:263 (1962)

[Soy. Math. 3:1259 (1962)]; D.E. Knuth, Sorting and Searching (Addison-Wesley,
Reading, Massachusetts, 1973).

13. R. Sedgewick, Algorithms in C (Addison-Wesley, Reading, Massachusetts, 1990).
14. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in

C, 2nd ed. (Cambridge University Press, Cambridge, 1992), pp. 300-304.
15. M. Rosso, J. Phys. A 22:L131 (1989).
16. R. M. Ziff and B. Sapoval, J. Phys. A 19:L1169 (1986).
17. M. Rosso, J. F. Gouyet, and B. Sapoval, Phys. Rev. B 32:6053 (1986).
18. D. Wilkinson and J. F. Willemsen, J. Phys. A 16:3365 (1983); D. Wilkinson and

M. Barsony, J. Phys. A 17:L129 (1984).

Communicated by D. Stauffer

