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Cluster Hull Algorithms for Large Systems 
with Small Memory Requirement 
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Improved hull walking algorithms for two-dimensional percolation are 
proposed. In these algorithms a walker explores the external perimeter of 
percolation clusters. With our modifications very large systems (size L) can 
be studied with finite and small memory requirement and in computation 
time ~ ~ L TM. Applications in determining spanning probabilities, continuum 
percolation, and percolation with nonuniform occupation probability are 
pointed out. 
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Percola t ion  has been s tudied extensively in recent years (see ref. 1 for an 
overview). It provides  examples  of critical phenomena  which are easily 
accessible to numerical  investigation.  Appl ica t ions  range from geology 
(flow in porous  media)  to ecology (forest fires) to thermal  phase 
t ransi t ions t2) and the quan tum Hall  effect. (3) 

One of the most  e lementary  problems in percola t ion  is to determine 
whether  a percola t ing  cluster connect ing opposi te  sides exists in a finite 
system. Hoshen and K o p e l m a n  (4) in t roduced an a lgor i thm which performs 
this task in a time of the order  of the volume of the system, ~ ~ L a, apar t  
from logar i thmic  factors. It also yields the probabi l i ty  d is t r ibut ion of 
clusters with size. 
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Ziff etal. tS) proposed an algorithm which explores the hull (the 
external perimeter) of large clusters. A walker (e.g., a highly trained ant) 
proceeds on occupied Iattice sites along the hull always keeping to the left. 
The algorithm corresponds to a well-known strategy to avoid getting lost 
in a two-dimensional maze. A walker who always touches the (locally) left 
wall is certain to return to the starting point before passing any point in 
the maze more than twice. Indeed the algorithm has been used in maze 
walking programs (see, e.g., ref. 6). 

In one of the first applications to percolation it was used to determine 
the fractal dimension Dh =' / /4  of the hull of large clusters/5'7~ This result 
is now known to be exact/s'9~ 

The question whether a spanning cluster, connecting top and bottom 
of a system of L x L sites, exists can be decided in the following way. t~~ 
The leftmost column of sites is held unoccupied while the lowest row is 
completely occupied. The walker begins in the lower left corner and walks 
until it reaches the top row (in which case there is a spanning cluster) or 
the rightmost column (in which case there is no spanning cluster). The 
spanning probability RL(p) has been determined accurately using this 
algorithm.l~) 

The main advantage of hull walking algorithms--besides their 
simplicity--is that only the sites on the hull and their unoccupied nearest 
neighbors to the left have to be generated. (To "generate a site" means to 
decide whether it is occupied by generating a random number. Each site is 
generated locally, i.e., only at the time when the walker needs to know its 
state.) For large systems this is only a small fraction of the whole lattice. 

However, there is the following problem. If the walker comes back to 
a previously visited site, it must find the site in the same state (occupied or 
unoccupied) as before--unless one wants to study a trivial annealed model. 
We are going to discuss a strategy which has been used before to handle 
this problem (labeled A below), and then propose two new methods 
(B and C below). 

In ref. 11 every site is in one of three states: unvisited (0), unoccupied 
(1), occupied (2). Before the walker starts, all sites are set unvisited. Along 
the run a previously unvisited site is generated and set to the appropriate 
state, while a previously visited site is not generated again. We call this 
strategy A. While it solves the problem of multiply visited sites, it intro- 
duces limitations for the algorithm. First, memory space of the order L 2 is 
required to store the states of all sites in the system. Second, for very large 
L the initialization time scales as Tin" ~ L z, for we need to set all sites 
unvisited. The actual walk takes time proportional to its length n,., i.e., 
l',v'~ n w,- ,  L 7/4, so in the thermodynamic limit most of the time is used to 
initialize sites, which will never be visited. However, for practical purposes 
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it is the memory requirement that will limit the system sizes L that can be 
studied, because the initialization can be done very efficiently on many 
machines. 

Strategy B consists of storing only the states of sites that have been 
visited in a "balanced tree. ''c~2"~3~ Before generating a new site the tree must 
be searched to find out whether the site has been generated before, and if 
so, whether it is occupied. The tree requires memory space proportional to 
the number of steps in the walk n,, ~ L 7/4. Searching and storing requires 
CPU-time proportional to ln(n,.) for one site, thus the total computation 
time scales as T,',~n,,ln(n,,,)~LT/41n(L). Therefore, apart from the 
logarithmic factor, the faster scaling ~ L  7/4 of the hull survives for large L. 
The memory limitation is less severe than for strategy A, but is still present. 
Searching and sorting in balanced trees is nontrivial, but we can use the 
corresponding programs from ref. 13 for our purpose with no substantial 
modification. 

Strategy C makes use of a particular random number generator 
(RNG). ~14)'3 It generates a random number r by applying a very nonlinear 
function f to an input number i ,  i.e., r = f ( i ) .  The generated numbers are 
random in the sense that there are no detectable correlations between input 
numbers and output ("random") numbers. In particular, very similar input 
numbers correspond to apparently uncorrelated output numbers. We give 
a brief sketch of the nonlinear function f ( i ) .  Here i and r are 64-bit 
words. (Actually both numbers are represented by two 32-bit unsigned 
integers, which are called "left 32-bit word" and "right 32-bit word.") The 
function fcons is t s  in four iterations of a "cycle," during which the old right 
32-bit word becomes the new left word and the new right word is the result 
of a 32-bit XOR operation with the arguments (left word) and g(right 
word), g is a nonlinear function which includes multiplication, addition, 
and XOR operations applied to the 16-bit long left and right parts of its 
argument. For details we refer to ref. 14. 

To generate a site at (x, y) we use its address as input to the RNG 
and obtain a 64-bit random number r =f(x, y), which is used to decide 
whether the site is occupied. In this manner we are able to generate 
random occupation probabilities that depend only on the site which is 
currently visi ted--and not on how many random numbers have been 
generated before by a (somewhat faster) sequential RNG. Obviously there 
is no need to store the state of any site. If we confine ourselves to the study 
of a system with size L=22~  10 6, the unused 12 bits in left and right 

3 The first edition of ref. 14 does not include the RNG, which was used here, but discusses its 
parent, the "Data Encryption Standard" (DES), which is probably better--i.e., has fewer 
correlations--but much slower. 
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words (x, y)  can be used to number  different runs, which are stat ist ically 
independent  for pract ical  purposes.  

Now we discuss some results obta ined  with strategy B. As ment ioned 
above,  the computa t ion  time for the spanning  a lgor i thm is p ropor t iona l  to 
the length of the walk n,., apar t  from logar i thmic  factors. Two cases must  
be distinguished. Consider  first the critical point  p = p,,. The total  length of 
the walk n,,. can be divided into two parts  n,. = nl,!~ + n~,. 2~. If the system per-  
colates from bo t tom to top, nl,! ~ is defined as the length of the walk until 
the walker  visits the bo t tom row for the last time. n~2. ~ is then the length of 
the walk on the hull of the spanning cluster, nl,! I can be interpreted as the 
length of the walk to find the spanning  cluster. If the system does not  
percolate,  n~,,! j is defined as the length of the path  until the walker  visits the 
left column for the last time. nl,21 is p ropor t iona l  to L oh, where D h =  7/4 
is the fractal d imension of the hull. nl,,J, I is found numerical ly  to be also 
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Fig. 1. At the critical point the length of the walk scales as n,.~ L TM. Here nl,! j is the time 
which is needed to find the percolating cluster (or wall). It follows the same sealing law. The 
data points are averages over 1000 runs for L = 500, 1000, 2000, and 4000, over 500 runs for 
L=8000, and over 100 runs for L=I6,000. All runs together took about 40hr on a 
SPARCstation 1. Where error bars are missing, the statistical error is smaller than the size of 
the dots. 
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propor t ional  to L ~ (Fig. 1). So the total walk n,. is also propor t ional  
to Lm; numerically we find (Fig. 1) 

z ~ L o~,, D~, = 1.754 + 0.007 ( 1 ) 

The computa t ion  of the data  points in Fig. 2 took about  4 0 h r  on a 
SPARCsta t ion  1. 

If p > Pc, the dimension of the percolating cluster is 2 and the walker 
will essentially stay close to the left wall, its mean distance being of the 
order of the correlat ion length ~. If 1 ,~ r ,~ L, we can divide the left stripe 
of the system where the walker advances into L / ~  clusters of unoccupied 
sites with linear extent r and hull ~ ~7/4. The  walker goes along the hull of 
these clusters and hits the straight left wall between two clusters. So the 
length of its total walk scales as 

nw ". ~7/4(L/~)  = L r  3/4 " L ( p  - P c ) - '  (2) 

For  p <  Pc the same argument  holds for the dual system, i.e., for non- 
occupied sites which are defined to be connected if they are nearest  or  next 
nearest neighbors. So the walker stays close to the bo t tom row with mean 
distance propor t ional  to ~ and the same scaling behavior  (2), which is 
confirmed by Fig. 2. For  p ~ Pc the computa t ion  time is bounded by (1), 
which leads to a saturat ion at n~aX(L= 16,000).w. 1.15x 10 7. The time is 
measured in walker steps, so it counts  the occupied sites which are visited 
by the walker, where some sites are counted twice. For  the system studied 
here, L = 16,000, L 2 / n ~  ax ~ 23. 
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Fig. 2. Off the critical point the length of the walk scales as n,.~ IP-Pcl-J. Close to p,. 
finite-size effects bound n,.. The data points are averages over 100 runs, respectively. 

822,74/3-4-30 
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Both strategies B and C can be used for continuum percolation like 
the two-dimensional Swiss-cheese model, e.g., in Rosso's algorithm, t~5) 

We applied strategy C to the gradient hull algorithm introduced by 
Ziff and Sapoval. t~6~ Consider site percolation on a square lattice where the 
occupation probability depends on the position p(x, y). To be specific, let 
p(x, y) = Po-  Gy. Then there is a gradient G in the occupation probability. 
All sites ( x = 0 ,  y > 0 )  are left unoccupied and all sites ( x = 0 ,  y~<0) are set 
occupied. The walker starts at the origin heading to the right. If  G is small 
(G < 10-3), the walker will essentially go to the right at a height y which 
fluctuates around y~, defined by p(x, y~)= p~. The typical spatial fluctua- 
tion Ce and the corresponding fluctuation Ape can be estimated by a 
heuristic argument. ~9' ~6~ For Ay = y -  y~ > Ce we have finite clusters with a 
typical size ~ ~  Ip--p , l -4 /3~(GAy)  -4/3. The clusters grow together at 
AYe = Ce, which leads to 

~ e  ~ G - 4 / 7  a n d  Ape ~ G 3/7 (3) 

This is confirmed by Fig. 3. If a very long walk is performed, the mean 
value (p(x, y))  = Po-  G ( y )  approaches pill, providing an estimate for 
Pc. The largest value of x, x . . . .  can be found by dividing the walk into 
Xma,,/~e pieces of size Ce- As the fractal dimension of the hull is D,  = 7/4, 

,r 7 /4  x I , r  ,.~ the walker goes , ~ , ~ 4  steps on each piece, so that n w ' - ~ e  max/~e 
Xmax G-3/7.  The statistical error for p~e) is given by Ape divided by the 
number of independent measurements, which is the number of pieces of 
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Fig. 3. In the hull gradient algorithm the walker moves in a region where p(x, y) ~ p~G~ ~ pC. 
The fluctuations JPG are proportional to G 3/7, where G= [Vpl is the gradient. For small 
gradients, fluctuations are small, but the statistical error grows (see text). 



Hull Algorithms for Large Systems 925 

size ~c:Xm,x/~o~n,.G. So we find for the 
Apo(n,,.G)-1/2 ~ G-1/14n,7. 1/2) i.e., 

statistical error Ap~C)~ 

n.. ~ G-In(Ap(f)) -2 (4) 

This result means that in order to obtain p~ 1~ with the same accuracy 
as p~C), we need to run the program ten times longer. Of course, G must 
be large enough that x,~,,,/~e>l and one must be certain that 
IP~G)-Po] <Pc. (If riot, one has to wait for equilibration, see below.) 
Because p(f) ~ s o  Pc, we are interested in P c - p ~ ) f o r  small G > 0. In part 
the finite-G deviation is characterized by dpc.  There is no convincing argu- 
ment which could tell us how the mean (p(x, y))  should be taken--as  the 
arithmetic mean P o - G ( y )  (which we chose), as a geometric mean, as the 
mean occupation probability of the sites along the walk, 116'17) or anything 
else. However, it does not seem unplausible--and simulations strongly 
indicate this-- that  for very small G all definitions of p~G) approach each 
other and Pc more rapidly than Apt approaches zero, i.e., (pc-p(~))/  
ApG ~ ~ 00.  This needs some more investigation. Another limitation of the 
accuracy ^~-(G) u, pc is the fact that p(x, y) on a lattice is quantized. It is very 
surprising that pl. a ~ -  p~ has been found "6) to be at least two orders of 
magnitude smaller than G = 4 x l 0  -S, which is the step p ( x , y ) -  
p(x, y + 1) for nearest neighbors. We can avoid any uncertainty about the 
convergence of p ( f ) - p , ,  by choosing G small enough that the error is 
dominated by Ape- -but  at some cost. First the statistical error will 
increase according to (4), which is not too costly, because 1/7 is a small 
exponent. Second CG and the necessary size of our system will grow; 
however, this does not matter if strategy C is used. 

p~ can also be measured the following way. First let G be small enough 
that AP6 ~ G3/7 is our desired accuracy. Then start with Po being the best 
known value ofpc  at (0, 0). After n,,. steps the walker has reached the criti- 
cal region, i.e., p(x, y ) - P c  < ,dPG. The n,. is determined as follows. The 
walker goes on the hull (length ~ ~7/4) of finite clusters (size ~.-. Ap -4/3) 
which "stick" to the boundary at x = 0, until it reaches Ay ~ ~G, when it 
begins to move to the right. The total length is 

n,, = dn,,, ,,. - dy ~7/4/r 
,:Iv = A y 0 YO 

f~a --4/3)3/4 1 r~a 1 
"-- yodY(Ap -G- Jayodyy 

Ayo G- I APotd " G  -1 In --~-- ~ In (5) 
g c  Ap.~w 
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So apart from the logarithmic factor, n , , ~ G  -~ ~z~p~ 7/3. This is again a 
little slower than the statistical limit Ap,_ 2. It is an interesting question 
whether there are algorithms to determine p,. which scale faster, i.e., 
z ~ Ap>~--7/3, for Ape ~ O. The results in ref. 16 seem to indicate this. 

Another application of strategy C is to consider a more complicated 
function p(x,  y). As has been pointed out in ref. 17, for gradient percolation 
p~Ol is approached automatically. If we let p(x,  y ) =  Po + ky/x,  the gradient 
G ~ k /x  becomes smaller the farther the walker proceeds. In this case p,. 
(not only IG~ Pc ) is approached automatically, i.e., with ever increasing 
accuracy, much like in invasion percolation. ~s~ We regard this as an 
instance of self-organized criticality. Scaling arguments similar to those 
mentioned above lead to n.,~ (~pa) -1~ which would be rather slow if 
,dpa were a typical measure for the accuracy of the determination of Pc. 

For arbitrary p(x,  y)  (gradients should be small everywhere) the mean 
movement of the walker depends on whether or not it is in the critical 
region, [p(x, Y ) - P c l  <APo=lVpl~lVpl  3/7. In the critical region the drift 
perpendicular to the gradient is dominant and the average velocity is 
v,--[Vp[ 3/7. This is easily obtained from XmaJn,, (see above). Outside the 
critical region the average velocity is oriented (anti)parallel to the gradient 
in the direction ofp~ with an absolute value v-,-~-3/4 ~ iVpl3/7. One expects 
a transition region for Ip(x, y ) -  p,.I .~ IVpl 3/7. 

To conclude, we propose two new strategies for handling the "return 
problem" in hull walking algorithms for two-dimensional percolation. One 
of them is based on the use of a particular random number generator. 1141 
The strategies extend the application of hull algorithms to extremely 
large systems, taking full advantage of fast scaling with finite (small) 
memory space. Several applications in determining spanning probabilities, 
continuum percolation, and generalized gradient percolation have been 
pointed out. 
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